AD-A258 2 .
lIll:lhllli:lll)lllllllllllillll"l)lll))lll Special Report @

CMU/SEI-92-SR-4

Carnegie-Mellon University
Software Engineering Institute

s
wnasmaramr.
——Y ——
ern e e 5
W
————
e

DTIC

ELECTE
DEC1 01992
A Reuse-Based Software

Development Methodology C

K. C. Kang
‘ S. Cohen
/ R. Holibaugh

J. Perry
A.S. Peterson

* o il
¢ o o
e e e
o =T 4 8

szwunon r.lmm .d

o o o

¢ o o

/37/99-31228
A 01 92 12 09 05¢

Tre faliow.ng statement of assurance 15 more than a statement required to camply waith the tecderai laa T8 15 3 sincére statament ty the ety to Assure that ai
veopie are -nciuded in the divarsity ahich makes Carnege Mellon an excitng place Carnede Mellnn w ehns o nelude pecpie & o tegand tnrace st vl
argin sex randcap relkgnn creer ancestry. behet age. veteran status or sexual orentatan

IO T B P S SO S S Y

Carnegie Melion University daes riob discnminate and Carnegwe Mellon Univescaty -s roguirod nop 16 bkt mnate -
COIOE NALONAL BOGIN. $ax Of NANGICAN N violahon of Tae Vot the Gl Fights Act ol 1964 Tatle 4 of the Edir atoral Arvenments o 1070 40 Buncton H0d ~iv e
Rababittaton AC! of 19773 or nther federal state nr 10cal 1aws Of executve orders in addtion Carnege Melor does 9ot h6or memle o fi7 wynns 4t einyrent an
the hasig of religon creed ancestry balet adge wataro Stats Ne serual rentation o violator of any teceral SIale OF WG Lras f DR Ve arers g T e ancers
ng appheaton of th.g polcy shouid he drected 10 the Provost Carpege Meallon Uniars 1y B00GF O Sgpoa e Pttt B8 TG00 ¢ ol o (1000 TGR BRAS Cr b
e Pres Jent for Enroliment Carmege Mellon Uaversity SO0 Fotwes Avpane, Pittshyrgh PA 15217 totsgboon 14121 Phi 2006

ﬂ|!|l|l|||'|

Special Report

CMU/SEI-92-SR-4
May 1992

A Reuse-Based Software
Development Methodology

Kyo C. Kang
Sholom Cohen
Robert Holibaugh
James Perry

A. Spencer Peterson

Application of Revisable Software Components Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SE! Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Ll

John S. Herman, Capt, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transler of
scientific and technical information for DoD onnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC direcly: Defense Technical information
Center, Atn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are aiso available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213,
Use of any trademarks in this report is not intended in any way 10 infringe on the rights of the trademark holder.

Table of Contents

1 Introduction

2 A Reuse Activity Model

3 System Requirements Analysis
4 Software Requirements Analysis
5 Design

6 Coding, Integration, and Testing

7 Expected Results

Appendix A Methodology Task List
A.1 System Requirements Analysis
A.2 Software Requirements Analysis
A.3 Preliminary Design
A.4 Detailed Design
A.5 Coding and CSU Testing
A.6 CSC Integration and Testing
A.7 System Integration and Testing

References

C ..
INSPE
4

CTED

1"

13

15
15
18
20
22
24
24
25

27

Aceagsiom Forl

CNTIS GReMd

PIC Ras

P Uaacaneed

D il leat LerL_
.

.
TL'

i
t

i By

D Distetewtien

Aveat it iliew Codng

Sesl

Ni{es o
B\
i ;'

1

i

‘-

CMU/SEI-91-SR-4

i/or
»orial

e,

CMU/SEI-91-SR-4

A Reuse-Based Software Development Methodology

Abstract: Software has been reused in applications development ever since
programming started. However, the reuse practices have mostly been ad hoc,
and the potential benefits of reuse have never been fully realized. Most of the
available software development methodologies do not explicitly identify reuse
activities. The Application of Reusable Software Components Project of the
Software Engineering Institute is developing a reuse-based software
development methodology, and the current direction and the progress of the
methodology work are discussed in this paper.

The methodology is based on the life cycle model in DoD-STD-2167A with
refinement of each phase to identify reuse activities. The reuse activities that
are common across the life cycle phases are identified as: 1) studying the
problem and available solutions to the problem and developing a reuse plan or
strategy, 2) identifying a solution structure for the problem following the reuse
plan, 3) reconfiguring the solution structure to improve reuse at the next phase,
4) acquiring, instantiating, and/or modifying existing reusable components, 5)
integrating the reused and any newly developed components into the products
for the phase, and 6) evaluating the products. These activities are used as the
base model for defining the specific activities at each phase of the life cycle.

This methodology focuses more on identification and application of reusable
resources than on construction of reusabie resources, and some
enhancements in the construction aspect might be necessary to make it more
complete.

This methodology has never been applied; it will be used in an application
redevelopment experiment and then will be improved based on our experience.

1 Introduction

Software reuse is not a new development concept. For instance, we have been reusing soft-
ware libraries for decades. However, reuse has mostly been limited to code and has generally
been practiced in an ad hoc way. The impacts of reuse on software development and the po-
tential benefits and risks of reusing other life cycle products (such as requirements and design)
have not been fully understood.

The Application of Reusable Components Project of the Software Engineering Institute is con-
ducting a reuse experiment through the redevelopment of an existing system. Through the ex-
periment we want to gain experience with available reuse technology, measure and
understand the impact of software reuse on products and the development process, under-
stand what and how we can reuse at each phase of the life cycle, and collect and accumulate
data for evaluating technologies in the future.

CMU/SEI-92-SR-4 1

One of the experiment tasks is the creation of a reuse-based software development method-
ology. The purpose of the methodology task is to identify the development activities and to de-
fine the order in which the identified activities are to be carried out during the software
development.

There are many reuse-based methodologies [1, 3, 4, 5]. However, most of these methodolo-
gies are based on specific methods or techniques and reusable components must be devel-
oped using the methods or techniques before they can be utilized. We are not interested in
developing a new technology; we are interested in utilizing the available technologies. There-
fore, we focus on how to identify the technologies appropriate for a given project and then in-
tegrate them into the development process and products.

We have chosen the DoD-STD-2167A [2] as the basis for our methodology and have followed
the guidance of the “STARS Reusability Guidebook”. The rationale behind our choice are:

1. It is general and can accommodate various development methods and
techniques.

2. DoD mandates use of the standard in DoD contracts. Our methodology that
is compatible with the standard will identify a reuse approach that DoD
contractors might take advantage of. Through experiment, we might also
identify problems that might be with the standard in promoting reuse.

A development methodology for a given project should identify:

The development activities,
The artifacts to be produced,
The available resources, and

W N~

A development plan relating the activities, artifacts, and development
resources in terms of schedules and milestones.

The methodology in this paper is a general one. Therefore, a specific methodology may need
to be created by instantiating the general methodology in this paper considering the level of
experience with the application domain and the project constraints (e.g, available resources).

The methodology has not been applied, and is therefore not complete. By applying the meth-
odology during the experiment, we want to understand what and how we can reuse. Based on
our experience, we will improve the methodology. A detailed methodology task list is included
in the Appendix.

2 CMU/SEI-92-SR-4

2 A Reuse Activity Model

The methodology refines the life cycle model given in DoD-STD-2167A by identifying reuse
activities applicable to each phase. (DoD-STD-2167A identifies the life cycle phases as sys-
tem concepts development, system requirements analysis, software requirements analysis,
preliminary design, detailed design, coding and unit testing, software component integration
and testing, and system integration and testing.) In defining activities for each phase, a generic
reuse activity model is used as a base model. The generic model is discussed in this section.

Reuse is an act of synthesizing a solution to a problem based on predefined solutions to sub-
problems. The reuse activity is divided into six major steps performed at each phase in prep-
aration for the next phase. These steps are:

1. Developing a reuse plan or strategy after studying the problem and available
solutions to the problem,

2. Identifying a solution structure for the problem following the reuse plan or
strategy,

3. Reconfiguring the solution structure to improve the possibility of using
predefined components available at the next phase,

4. Acquiring, instantiating, and modifying predefined components,
5. Integrating the components into the products for this phase, and
6. Evaluating the products.

The major tasks under the first step are to understand the problem, build up the knowledge of
the predefined solutions, and develop a plan or strategy of how to effectively apply the solu-
tions to solve the problem. Alternative ways of structuring the problem are investigated, and
rules and guidelines of applying the predefined solutions are developed.

The next step is to apply the knowledge to develop a solution structure that is best suited for
the problem following the reuse plan or strategy developed at the previous phase. Various at-
tributes (such as consistency, completeness, and understandability) of the product are evalu-
ated during the development process.

Once a solution structure is identified based on the available predefinad components at a giv-
en phase, the next step is to reconfigure the solution in order to optimize reuse both at the cur-
rent phase and the next phase. Doing so requires identifying experts of the next phase activity
who will review the proposed solution, identifying candidate components available at the next
phase and evaluating the reusability of the candidate components. Based on the potential re-
use at the next phase as well as at the current phase, an optimal solution structure is to be
identified. We anticipate that the first three steps would be iterated a number of times. The ma-
jor output from the first three steps is a solution structure and a reuse plan for the next phase.
The fourth step includes tasks of making components identified in the solution structure ready
for integration. These tasks include acquiring reusable components, modifying and/or instan-

CMU/SEI-92-SR-4 3

tiating reusable components, and developing the components that cannot be acquired or for
which modification is not economic. Finally, the completed components are integrated into the
product(s) required for the phase and the integrated products are subjected to a formal review
and evaluation before being released to the next phase. If any problem is found during the re-
view, the activities are repeated starting at the step where the problem is introduced before
the next phase activities begin.

The next sections show how this generic reuse model is applied to the life cycle phases.

CMU/SEI-92-SR-4

3 System Requirements Analysis

At the system requirements analysis phase, the system requirements are allocated between
hardware, software, and personnel. The major activities at this phase, as defined in DoD-STD-
2167A, are:

1. Allocating the system requirements between hardware, software, and
personnel, and determining whether the software requirements are
consistent and complete,

2. Defining a preliminary set of engineering, interface, and qualification
requirements for each CSCI, and

3. Developing a software development plan (SDP).

In allocating the system requirements between hardware and software, the current trend is to
determine the software requirements first and then to determine the hardware requirements
based on the resulting software. This approach is referred to as the software-first approach in
[STARS87]. The motivation of the approach is to develop “common, reusable, and machine-
independent software parts,” and then to utilize those in systems development. Our method-
ology is based on the software-first approach.

To effectively utilize available resources (i.e., software artifacts, techniques, methods, tools,
and human expertise) in the software development, the resources that are applicable for the
development of a target system must be identified early in the life cycle, and the development
must be planned with consideration of the applicable resources. The system requirements
analysis phase is the phase of the life cycle where the functional boundary of software is de-
fined and the development of software is planned. We believe that software reuse must start
at this phase. Applicable resources must be identified and an overall strategy of utilizing the
identified resources in the development must be developed and be incorporated into the SDP
as areuse plan.

A reuse analysis will be conducted at this phase to develop a resource reuse strategy. Re-
sources available in a particular domain will be surveyed, and the applicability of the resources
in the target system development will be assessed. (The assessment at this phase may be at
agross level.) The reuse analysis will focus on macro-level reuse, that is, on identifying similar
(in terms of application domain, design, or run-time architecture) systems, especially those
that are buiit for reuse. The assessment results will be used at this phase in determining the
functional boundary between software and hardware, in identifying the software components
(CSCls) and their functional boundaries, and in developing a reuse strategy. In this context,
the reuse analysis we plan to perform is different from the domain analysis in Neighbors [5].
This methodology focuses on identifying reusable resources in an application domain, where-
as Neighbors’ methodology focuses on identifying commonalities among the applications in a
domain.

CMU/SEF92-SR-4 5

The reuse analysis must be performed by or with domain experts. (We have domain experts
from industry.) Through the analysis, we want to identify application models, design models,
any reusable artifacts (e.g., requirements, design, code, test cases) that may be used with
each model, implementation techniques, run-time architectures, and any experts whom we
may consult with for further analysis or more information. For each reusable artifact or tech-
nique, any alternatives, current applications, advantages and disadvantages, limitations, and
experience will be identified. We will also identify any known or potential problems, such as
any risks involved with new technology, any reliability, performance, or integration problems
(such as development or run-time environment differences, interface compatibility, and stan-
dards or hardware problems), or any compatibility problems with project constraints (e.g., pro-
gramming languages or development tools), and any suggestions to avoid or remedy the
problems. Based on these findings and the analysis results, we will develop an overall reuse
strategy by classifying the resources in terms of the life cycle phases at which they may be
used and the life cycle products into which they may be incorporated. The information collect-
ed for each resource during the reuse analysis, including advantages, disadvantages, limita-
tions, and problems, will also be included in the reuse plan to help make decisions at the
appropriate development phase.

In addition to increasing reuse in the target system development, we also want to increase the
reusability of the developed system for future projects by identifying the components which
have reuse potential and developing them for easy adaptation to other applications. In order
to do that we need to identify the potential applications of each component, analyze the simi-
larities and differences between the applications, and then select an appropriate design based
on the analysis results. A costbenefit analysis, including the expected cost and schedule over-
head, must also be performed to determine the possible impacts to the current system devel-
opment relative to future systems. Those components with reuse potential and the suggested
implementation techniques will also be included in the SDP as development guidelines.

The reuse plan developed at this phase is an overall plan. The plan is evaluated at the begin-
ning of each phase, and, as appropriate, will be modified, adjusted, or refined.

6 CMU/SEI-92-SR4

4 Software Requirements Analysis

The major activities at the software requirements analysis phase are, as defined in DoD-STD-
2167A:

1. Preparing the software requirements specification (SRS) and the interface
requirements specifications (IRS) for each computer software configuration
item (CSC!) identified at the previous phase (the system requirements
analysis phase),

2. Test planning, in which qualification requirements are defined for each CSCl,
and

3. Software specification review (SSR), in which the SRS and IRS are evaluated
for their conformance to the predefined criteria.

Of these activities, the activity of preparing the SRS and IRS is refined in this section based
on the generic reuse model defined in a previous section.

The major inputs to this phase are the system segment specification (SSS), the preliminary
interface requirements specification (PIRS), and the preliminary software requirements spec-
ifications (PSRS). The first step to develop SRS and IRS is to study the input documents (SSS,
PIRS, and PSRS) and understand the high-level requirements, and then to review the reus-
able requirements identified in the reuse plan, which is produced at the system requirements
analysis phase. (We believe that system structures relevant to the system under development
and the specifications of the objects, functions, interfaces, etcetera, defined for each structure
are reusable components at this phase.)

Based on a reusable structure(s), a new structure for the target system is created, and reus-
able components are identified and reviewed. Domain experts are identified, and they review
and evaluate the proposed structure and reusable software components. Based on their eval-
uation results and recommendations, the structure is modified if the modified structure resuits
in an improved solution (for example, a solution that will result in higher productivity or quality).
These activities (studying the SSS, PIRS, and PSRS; examining the reusable requirements;
creating or modifying the structure; and evaluating the structure against reusable software) are
repeated until an optimal structure is obtained. For example, the functional structure of an in-
ventory control system might provide a good framework for developing the functional structure
of a library system since both systems maintain information about the components (parts in
the case of an inventory system, and books in the case of a library system), inventory status,
back orders, customers, etcetera. The objects that are handled by the two systems are differ-
ent, but the processing requirements can be quite similar.

Once a structure is identified, the components that come from outside the project must be ac-
quired, the components that need to be modified or refined must be processed accordingly,
and components that cannot be acquired or that are too expensive to modify must be defined.
These pieces are combined to create the requirements documents (SRS and IRS).

CMU/SEI-92-SR-4 7

After the requirements analysis, the next phase of the life cycle is the preliminary design
phase. Based on the reuse activity model, some of the activities of the preliminary design
phase are refined in the following section.

8 CMU/SEI-92-SR-4

5 Design

Software design is performed in the preliminary design phase and the detailed design phase.
High-level software components are identified for each CSCI during the preliminary design,
and then the identified components are further detailed during the detailed design phase. We
believe that the reuse activities at the detailed design phase are basically the same as those
at the preliminary design phase but are performed at a finer granularity. Therefore, the
discussion will be limited to the preliminary phase. Activities for both phases are identified in
the Appendix.

The preliminary design phase is where high-level software components and relationships
among the components are defined for the software requirements (SRS and IRS). The major
activities of the phase are:

1. Developing a preliminary design for each computer software configuration
item (CSCI) identified in the requirements documents (SRS and IRS), and
allocating software and interface requirements to the computer software
components (CSC) identified in the design.

2. ldentifying and describing the formal qualification tests for each CSCI;
establishing test requirements for conducting computer software component
(CSC) integration and testing.

3. Conducting a preliminary design review (PDR), in which the SDD, IDD, STD,
and the CSC test requirements are evaluated for their conformance to the
predefined criteria.

Of these activities, the activity of developing a preliminary design is refined in this section.

The major inputs to the preliminary design activity are the requirements documents (SRS and
IRS) and the software development plan. The first step in developing a preliminary design is
to study and understand the requirements and the software development plan, and then de-
velop a preliminary design reuse strategy (rules and guidelines) by refining and, if necessary,
modifying the reuse plan in SDP. Some of the activities for developing a reuse strategy are:

1. Studying potential reuse by analyzing the “internal” (within the product;
among the CSCls) and “external” (with other products) commonalities. (The
external commonalities are identified at the system analysis phase through a
reuse analysis.),

2. Identifying the components that can be used for the product, and identifying
any constraints (e.g., performance or hardware requirements) or design
concerns (e.g., design alternatives or implementation techniques) that may
affect the quality (e.g., reusability, portability, and maintainability) of the
product, and

3. Performing a cost/benefit (e.g., technical difficulties, cost, and time) analysis
and selecting the design structures and components that are cost-effective.
(State any rules or guidelines for utilizing the structures and components in
the development.)

CMU/SEI-92-SR-4 9

Based on the reuse strategy, a design structure is defined for each CSCI. First, if there are
candidate structures identified in the SDP, the design structures that satisfy the functional re-
quirements are selected. Validity of each identified structure is determined by allocating the
CSCl functions, memory and processing time requirements, and the interface requirements to
the components of each design structure. The best one (for example, the one that requires the
least amount of resources to instantiate, modify, operate, and/or maintain) is selected among
the candidate structures, and, if necessary, is refined and/or modified following the reuse strat-

egy.

The next step is to integrate the identified structures and components by defining the global
data (e.g., structure, value range, accuracy, access, etcetera) and the control flow among the
components within each CSCI. Once an initial preliminary design is obtained, the design is
evaluated against the reusable components that are available at the next phase and, if neces-
sary, modification is made to the design to increase reuse at the next phase.

Any CSCs and Units that are candidates for use at the detailed design phase are identified,
any design concerns, rules or testing considerations that must be looked into or followed are
recorded, and any potential benefits or problems (technical, cost, or schedule) that have been
found during the analysis are described in the detailed design reuse plan.

The components (CSCs and Units) identified at the previous step are acquired and, if neces-
sary, modification or instantiation is made to meet the allocated requirements. If the compo-
nent is new, it is described by specifying inputs, outputs, local data, interrupts, timing,
sequencing, processing algorithm, error handling, etcetera.

Once a preliminary design is obtained, it is evaluated against the reuse strategy.

10 CMU/SEI-92-SR-4

6 Coding, Integration, and Testing

The rest of the life-cycle phases identified in DoD-STD-2167A are:

Coding and unit testing,

CSC integration and testing,
CSCl testing, and

4. System integration and testing.

W np o~

For these phases, the methodology follows DoD-STD-2167A. However, the reused compo-
nents that were tested previously, have documented test resuits, and have not been changed
since the last testing are not required to be tested in this methodology.

CMU/SEI-92-SR4 11

12

CMU/SEI-92-SR-4

7 Expected Results

By applying the methodology under the controlled conditions of an experiment, we will evalu-
ate the methodology to identify and quantify the benefits and risks of a reuse-based approach.
We will also characterize the reusable components and the development process. More spe-
cifically, we want to:

1. Identify and classify reusable resources and make an assessment as to how
effective reuse was,

2. Evaluate if reuse can be effectively done under the DoD-STD-2167A process
model and come up with a recommendation, if appropriate, and

3. Refine the reuse-based methodology and include guidelines for performing a
reuse analysis and for developing and applying a reuse strategy.

In the development of this methodology, an emphasis was given in developing a general task
model that can accommodate various methods, techniques, or application models. Therefore,
depending on the specific methods or techniques selected for a project (e.g., automation-
based techniques), some of the tasks may become irrelevant and be eliminated from the meth-
adology. Also, when this methodology is applied to a domain repeatedly, some of the tasks
(e.g., identifying reusable resources) might become unnecessary.

We plan to document our experience and the lessons learned as reuse guidelines. Our under-
standing will help to define the requirements for a high-productivity software engineering en-
vironment that is based on reuse. This new technology will mature through application,
evaluation, and improvement.

CMU/SEI-92-SR-4 13

14

CMU/SEI92-SR-4

Appendix A Methodology Task List

A Software Development Library (SDL), Software Development Files (SDFs), cost/schedule
reports must be created and be kept up-to-date during the development and testing. Tasks of
creating and maintaining the SDL, SDFs, and cost/schedule reports are not explicitly defined
in the following task list but must be carried out as appropriate. Any subtasks of the tasks de-
fined in the methodology or any corrective tasks for handling problems may be created as
needed during the development or testing. The tasks for developing any documents (e.g.,
Computer Resources Integrated Support Document, Computer Systems Operator’'s Manual,
Software User's Manual, Software Programmer’s Manual, Firmware Support Manual) that are
not specified in this methodology but are required by the Contract Data Requirements List
(CDRL) should be added to the methodology.

A.1 System Requirements Analysis

1. Review the preliminary System/Segment Specification document (DI-CMAN-
80008A).

2. Perform a reuse analysis.

a. Identify relevant subdomains (application domain, technology
domain, computer science domain) of the application, and identify
experts in each subdomain (Note: subdomain will be referred to as
domain).

i. ldentify experts of the application domain; consult with the
experts to identify the technologies (e.g., communications,
navigation) involved with the application and then identify
experts in each technology domain; if necessary, consult with the
technology domain experts to identify the relevant computer
science domain (e.g., database, Al).

b. Perform domain analysis.

i. ldentify a generic application architecture (or a framework) (a
generic architecture may be defined in terms of a collections of
functions, features, objects, etcetera.). The architecture serves
as a model in decomposing a “problem” into subproblems,
categorizing previous “solutions” to the subproblems, and
synthesizing a solution using the existing solutions.

c. Define a framework of the development and test environment.
d. Perform resource analysis.

i. Survey available resources for the components identified in the
generic architecture.

a. Identify software artifacts such as software components,
application systems, requirements, design, development
plan, test plan, test description, and test data.

CMU/SEI-92-SR-4 15

b. Identify methods and tools (e.g., development tools, test
tools or environments, project management tools).

ii. Assess the applicability and reusability of the identified
resources.

a. Identify any project constraints on development
environment, including languages, tools, methodologies,
and hardware.

b. Identify application models, design models, reusable
artifacts, implementation techniques (paradigms), run-time
architectures, and experts.

c. Identify alternatives, current applications, advantages and
disadvantages, limitations, and user experiences.

d. Identify any constraints or requirements in using the
resources (e.g., programming language, hardware,
software).

e. Understand the data rights and the support policy (error
correction, enhancement, and modification), and evaluate
documentation and any evidence of certification.

f. Identify any known or potential problems (any risks involved
with technology, any reliability, performance, or integration
problems) and any suggestions to avoid or remedy the
problems.

g. ldentify any relationships between the resources (e.g., if two
components require different hardware, selection would be
exclusive of each other) and determine how selection of a
resource affects utilization of other resources.

h. Identify the development approaches (e.g., object-oriented,
functional decomposition) that are best suited for each
reusable resources.

i. Assess the reusability of the identified resources and
determine the applicability of the resources to the
application; evaluate and determine if they perform as
documented.

j. Identify groups of resources, each of which can form a
consistent development environment (including tools,
methods, and artifacts).

3. Identify the Computer Software Configuration items (CSCls) that will
maximize reuse (while minimizing the risk), and then allocate the system
requirements to the CSCis.

16

CMU/SEI-92-SR4

4. Determine hardware configuration items (HWICs) and manual operations
considering the CSCls identified at the previous step; document the allocation
of system requirements in System/Segment Specification (DI-CMAN-
80008A) and System/Segment Design Document (SSDD) (DI-CMAN-
XXXXX, DI-ECRS-8XX1).

5. Define a preliminary set of engineering requirements for each CSCI and
document these requirements in a preliminary Software Requirements
Specification (SRS) (DI-MCCR-80025A, DI- ECRS-8XX7).

6. Determine a preliminary set of interface requirements for each CSCI and
document these requirements in a preliminary Interface Requirements
Specification (IRS) (DI-MCCR-80026A, DI-ECRS-8XX8).

7. Define a preliminary set of qualification requirements for each CSCI and
document these requirements in the SRS.

8. Develop a Software Development Plan (including an overall reuse strategy)
(DI-MCCR-80030A, DI-ECSR-8XX3.

a. Develop a reuse strategy.

i. Classify the applicable resources for each CSCI in terms of the
generic architecture, life-cycle phases, and the life-cycle
products.

ii. Describe the relationships (mapping, structural, utilization,
application) amongst the resources (in a form of traceability
matrix).

iii. Include the information such as requirements solved by reusable
resources, advantages, disadvantages, limitations, problems, or
any suggestions that will help make decisions at each
development phase.

iv. Describe any constraints in using (or imposed by) the resources;
for example, selection of one component might affect selection
of the others.

v. Describe the data rights, support policy, and the certification
plans; obtain contracting agency approval.

b. Develop a software configuration management plan (DI-ECRS-
8XX4).

c. Develop a quality evaluation plan (DI-MCCR-XXXXX, DI-ECRS-
8XX5).

d. Develop schedule, milestones, and development procedures.
9. Evaluate the SDP, SSDD, preliminary SRS, and the preliminary IRS.

10. Place documents (SSS, SDP, SSDD, preliminary SRS, and preliminary IRS)
under configuration control.

CMU/SEI-92-SR-4

A.2 Software Requirements Analysis

1. Study and understand the system requirements (the preliminary SRS, IRS,
and SSDD).

2. Develop a requirements reuse plan based on the reuse strategy.
a. Study the reuse strategy in SDP.
b. Review domain/resource analysis results.
i. Identify the domains relevant to the application system.

ii. For each subdomain within the application domain, identify the
candidate reusable components (CSCls).

iii. Analyze the components for validity, compatibility, modularity,
modifiability, etcetera.

iv. Study potential reuse by analyzing the “internal” (within the
product; among the CSCls) commonalities.

c. ldentify design concerns that affect reusability and maintainability.
d. Perform cost/benefit analysis and develop a reuse plan.
3. CSCI requirements definition.

a. Based on tha reuse plan, define or identify candidate target structures
(rules, components, and relationships), and integrate the candidate
structures.

i. Identify structures based on the reuse plan.
ii. Determine the validity of the identified structures.

a. Analyze the functional, performance, interface characteris-
tics for validity, consistency, and completeness.

iii. Define and integrate structures.
a. Describe the top-level data and control flow between CSCis.

b. Identify and describe the global data (e.g., structure, value
range, accuracy, access, etcetera.).

b. Select, acquire, and modify structures.

i. Examine and identify candidate reusable top level Computer
Software Components (CSC) relevant to the CSCI functions.

ii. Determine selection criteria (e.g., increase commonality) other
than maximizing reusable CSCs.

iii. Evaluate and select structures (rules and relationships) from the
candidate structures (identified above at iii.a).

iv. Modify structures and associated artifacts (e.g., global data
definition), if needed.

18 CMU/SEI-92-SR-4

d.

vi.

identify the structures reusable in the future for other
applications; the identified structures are incorporated into the
generic architecture.

Update the preliminary design reuse strategy in SDP.

a. Identify top-level Computer Software Components (CSCs)
and critical lower level CSCs that may be reused.

b. Describe any design concems, rules or testing
considerations that must be looked into or foliowed at the
next phase.

c. Identify potential benefits or problems.

Specify components (CSCls); acquire/select and modify compo-
nents.

iv.

Perform a cost/benefit analysis with respect to reuse.
Acquire/select components.

Modify/instantiate components.

Specify new components.

a. Describe each CSCI by specifying inputs, outputs, local
data, interrupts, timing, sequencing, processing algorithm,
error handling, etcetera.

identify the components reusable in the future; update the
reusable resources knowledge base.

Integrate components and produce SRSs and IRS.

4. Test planning.

a. Define a complete set of qualification (correctness, reliability, etc.)

requirements for each CSCI; document these requirements in SRSs;
for reusable CSCls, use the qualification requirements defined for the
CSCis, if applicable.

5. Evaluate the SRSs and IRS using the evaluation criteria in DoD-STD-2167A;
produce a summary of the evaluation results.

6. Perform Software Specification Review(s) (SSRs).

7. Place the SRSs and IRS under the configuration control.

CMU/SEI-92-SR-4

19

A.3 Preliminary Design

1. Study and understand the software requirements.

2. Develop a (preliminary) design reuse plan (rules and guidelines) based on the
reuse strategy. (Note: A design reuse plan covering both the preliminary and
detailed design phases may be developed here.)

a. Study potential reuse by analyzing the “internal” (within the product,
among the CSCls) and “external” (with other products)
commonalities.

b. !dentify any constraints (e.g., performance requirements, hardware
requirements, etc.) that may affeci reusability and maintainability.

Identify design concerns that affect reusability and maintainability.

d. Perform costbenefit (e.g., technical difficulties, cost, time, etcetera)
analysis and develop reuse strategies.

3. CSCl top-level design.

a. Based on the reuse plan, define or identify candidate structures
(rules, high-level Computer Software Components (CSCs), and
relationships), and integrate the candidate structures.

i. Identify structures based on the requirements.
ii. Determine validity of the identified structures.
a. Aliocate CSCI functions and interfaces to CSCs.

b. Allocate memory and processing time to CSCs as
applicable.

iii. Define and integrate structures.

a. Describe the top-level data and control flow within each
CSCI.

b. Identify and describe the global data (e.g., structure, value
range, accuracy, access, etcetera).

b. Select, acquire, and modify structures.

i. Examine and identify candidate detailed design reusable
components relevant to the candidate high-level structures.

ii. Determine selection criteria (e.g., increase commonality) other
than maximizing detailed design reusable components.

iii. Evaluate and select candidate structures (rules and
relationships).

iv. Modify structures, if needed.

v. Identity the potential reusable artifacts (especially designs at
domain level) in the future; update reusable resources
knowledge base.

20 CMU/SEI-92-SR-4

vi. Update the detailed design reuse strategy in the SDP.

a. ldentify low level CSCs and Computer Software Units
(CSUs) that may be reused.

b. Describe any design concerns, rules or testing consider-
ations that must be looked into or followed at the next phase.

c. Identify potential benefits or problems (technical, cost,
schedule).

c. Specify components (CSCs); acquire/select and modify components.
i. Perform a cost/benefit analysis with respect to reuse.
ii. Acquire/select components.
iii. Modify/instantiate components.
iv. Specify new components.

a. Describe each CSC by specifying inputs, outputs, local data,
interrupts, timing, sequencing, processing algorithm, error
handling, etcetera.

v. Identify the components reusable in the future; update the
reusable resources knowledge base.

d. Integrate components and produce preliminary Software Design
Documents (SDDs) (DI-MCCR-80012A, DI-ECRS-8X10) and
Interface Design Document (IDD) (DI-MCCR-80027A, DI-ECRS-
8X12).

4. Test pianning.

a. Establish test requirements for conducting CSC integration and
testing and record the reguirements in the CSC SDFs; identify
different classes (timing test, erroneous input/recovery test, maximum
capacity test, interface test, security test, regression test) of CSC
tests.

b. For formal CSCl testing, identify the test requirements; test
organization, responsibilities, and schedule information; different
classes of formal tests; data recording, reduction, and analysis
requirements; and the purpose of each formal test planned.

c. Identify all the resources (facilities, personnel, hardware, software)
required for informal and formal testing.

d. Identify reusable testing artifacts for large grained reuse.

e. Produce a Software Test Plan (STP) (DI-MCCR-80014A, DI-ECRS-
8X16) and CSC test requirements documents.

5. Evaluate preliminary SDDs, preliminary IDD, STP, and the CSC test
requirements using the evaluation criteria in DoD-STD-2167A; produce a
summary of the evaluation results.

CMU/SEI-92-SR-4

21

6. Perform Preliminary Design Reviews (PDRs).

7. Place the documents (SDDs, IDD, STP, CSC test requirements) under the
configuration control.

A.4 Detailed Design

1. Study and understand the preliminary design.

2. Complete a detailed design reuse plan (rules and guidelines) based on the
detailed design reuse strategy in SDP.

a. Study potential reuse by analyzing the “internal” (within the product;
among the CSCs and CSUs) and “external” (with other products)
commonalities.

b. Identify design concerns that affect reusability and maintainability.
¢. Perform a cost/benefit analysis and develop reuse strategies.
3. CSC design.

a. Based on the reuse plan, define or identify candidate structures
(rules, low-level CSCs and CSUs, and relationships among them),
and integrate the candidate structures.

i. Identify structures for each CSC (refine CSCs into low level
CSCs and CSUs).

ii. Determine validity of the identified structures.

a. Allocate CSC functions and interfaces to the refined CSCs
(low level CSCs and CSUs).

b. Allocate memory and processing time to CSCs.
iii. Define and integrate structures.
a. Describe the data and control flow within each CSC.

b. Identify and describe the global data (e.g., structure, value
range, accuracy, access, etcetera).

b. Select, acquire, and modify structures.

i. Examine and identify candidate reusable CSU components
(code, libraries) relevant to the candidate low-level structures.

ii. Determine selection criteria (e.g., increase commonality) other
than maximizing CSUs (libraries, code).

iii. Evaluate and select candidate structures (rules and
relationships).

iv. Modify structures (and associated algorithms), if needed.

v. Identify structures (designs) reusable in the future; update the
reusable resources knowledge base

22 CMU/SEI-92-SR-4

vi. Update the code reuse strategy in SDP.

¢. Specify components; acquire/select and modify components.

i. Perform a cost/benefit analysis with respect to reuse.

il. Acquire/select components.

iii. Modify/instantiate components.

iv. Specify new components.

a.
b.

d.

Identify global data definitions within each CSC.

Identify inputs (global data, direct /0, parameters, shared
memory, etc.), input data attributes (source, format, unit of
measure, limits or value ranges, accuracy and precision,
frequency of input arrival, legality checks for erroneous
information), local data definitions, process control
requirements (source, purpose, and priority of
signalfiinterrupt; required response time; minimum,
maximum, and probable frequency of signal/interrupt),
processing (control, algorithms, special control features,
error handling, data conversion, communication interface,
etc.), utilization of other elements, limitations, and outputs of
all CSCs.

identify inputs, local data definitions, process control
requirements, processing algorithms, special control
features, protection, error handling, utilization of other
elements, limitations, and outputs for all CSUs.

Data base design including DBMS overview, database
structure, database file design, and database references.

v. Identify the components reusable in the future; update the
reusable resources knowledge base.

d. Integrate CSCs and produce SDDs and an IDD.

4. Test planning.

a. ldentify the requirements, responsibilities, and schedule for testing all
CSuUs; record this information in SDFs.

b. Describe test cases for each CSU in terms of inputs, expected resuits,
and evaluation criteria; record this information in CSU SDFs.

c. Establish test responsibilities and schedule for conducting CSC
integration and testing; record this information in CSC SDFs.

d. Describe the test cases for each CSC integration and testing in terms
of inputs, expected results, and evaluation criteria; record this
information in CSC SDFs.

CMU/SEI-92-SR-4

23

e. Describe the test cases for each formal CSCI test, in terms of
initialization requirements, input data, expected intermediate results,
expected output data, criteria for evaluating results, and any
assumptions and constraints; produce Software Test Description
(STD) for each CSCI (DI-MCCR-80015A, DI-ECRS-8X17).

f. Identify test artifacts for reusable components.

Evaluate the SDDs, IDD, CSU test requirements and test cases, CSC test
cases, SDFs, and STD using the evaluation criteria in DoD-STD-2167A,;
produce a summary of the evaluation results.

Perform Critical Design Review(s) (CDRs).

7. Place the SDDs, IDD, and STDs under the configuration control.

A.5 Coding and CSU Testing

Note: CSUs that were tested previously, have documented test resuits, and
have not been changed since the last test need not be tested again.

. Review SDP and identify the resources (code, test procedures) that can be

applied at this phase.

Review the STP and SDFs; understand the overall test requirements,
responsibilities, and the schedule.

Develop test procedures for conducting each CSU test; record the
procedures in the corresponding SDFs.

4. Code and test each CSU; record the test results in the corresponding SDFs.

5. Make all necessary revisions to the design documentation and code; perform

9.

retesting and update the SDFs.

Develop test procedures for conducting each CSC test; record the
procedures in the SDFs.

Evaluate the products (the source code, CSU test procedures and test
results, CSC test procedures, SDFs) using the evaluation criteria in DoD-
STD-2167A.

Place the source code and updated design documents (if any) under the
configuration control.

Identify potential reusable code, tests, and designs.

A.6 CSC Integration and Testing

Note: CSCs that were tested previously, have documented test results, and
have not been changed since the last test need not be tested again.

. Review the STP, STD, and SDFs; understand the overall test requirements,

responsibilities, and the schedule.

24

CMU/SEI-92-SR-4

2. For each CSCI, perform the FQT activities in accordance with the procedures
documented in the STD; record the test results in the Software Test Report(s)
(STRs) (DI-MCCR-80017A, DI-ECRS-8X19).

3. Make all necessary revisions to the design documentation, code, and IDD;
conduct all necessary retesting, and update STDs and SDFs.

4. For each CSCI, prepare a Software Product Specification (DI-MCCR-
80029A) and the source code for delivery.

5. Evaluate the STRs, the updated source code and design documentation
using the evaluation criteria in DoD-STD-2167A.

6. Identify the exact version of each CSCI to be delivered; document this
information in a Version Description Document (VDD) (DI-MCCR-80013A,
DI-ECRS-8X15) for each CSCI.

7. Have the products authenticated (Function Configuration Audit and Physical
Configuration Audit) by the contracting agency; baseline SPSs.

8. Identify test artifacts for reusable CSCls.

A.7 System Integration and Testing

1. Support the development and documentation of system integration and test
plans, test cases, and test procedures.

2. Support system integration and testing activities.

3. Support post test analysis and reporting of system integration and test
results.

4. Perform evaluation of the updated source code and design documentation
using the evaluation criteria in DoD-STD-2167A.

CMU/SEI-92-SR-4

26

CMU/SEI-92-SR-4

References

(1]

Bassett, P. G. "Frame-based Software Engineering.” IEEE Software
(July 1987).

[2] Deianse System Software Development, Military Standard DOD-STD-2167A,
October 27, 1987.

[3] Goguen, J.A. "Reusing and Interconnecting Software Components.”
IEEE Computer (February 1986).

[4] Lenz, M., Schmid, H.A., Wolf, P.F. "Software Reuse through Building Blocks."
IEEE Software (July 1987).

[5] Neighbors, J. M. "The Draco Approach to Constructing Software from Reus-
able Components.” IEEE Transactions on Software Engineering
(September 1984): 564-574.

[6] "STARS Reusability Guidebook V4.0." STARS Application Workshop, NRL,
San Diego, CA (September 1986).

CMU/SEI-92-SR-4 27

28

CMU/SEI-92-SR-4

UNLIMITED, UNCLASSIFIED
SECURITY QLASSIFICATION OF THIS PAGE

I REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S
CMU/SEI-92-SR-4

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(if applicable)

Software Engineering Institute SE|

7a. NAME OF MONTTORING ORGANIZATION
SEI Joint Program Office

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (City, State and ZIP Code)

ESD/AVS
Hanscom Air Force Base, MA 01731

8. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

| 6a. NAME OF PERFORMING ORGANIZATION

ORGANIZATION (if applicable) F1962890C0003
SEIl Joint Program Office ESD/AVS
8¢c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
gamt;agie Mcﬂloré University PROGRAM PROJECT TASK WORK UNTT
ittsburgh PA 15213 xO. \ ¥O.
9 63756E N/A N/A N/A
11. TITLE (Include Security Classification)
A Reuse-Based Software Development Methodology
12. PERSONAL AUTHOR(S)
Kyo C. Kang, Sholom Cohen, Roben Holibaugh, James Perry, and A. Spencer Peterson
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
Final FROM 10 May 1992 30 pp.
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on of y and identify by block number)
FIELD GROUP SUB. GR. method
reuse
software development
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Software has been reused in applications development ever since programming started. However, the reuse
practices have mostly been ad hoc, and the potential benefits of reuse have never been fully realized. Most of
the available software deveiopment methodologies do not explicitly identify reuse activities. The Application
of Reusable Software Components Project of the Software Engineering Institute is developing a reuse-based
software development methodology, and the current direction and the progress of the methodology work are

discussed in this paper.

The methodology is based on the life cycle model in DoD-STD-2167A with refinement of each phase to identify
reuse activities. The reuse activities that are common across the life cycle phases are identified as: 1) studying
the problem and available solutions to the problem and developing a reuse plan or strategy, 2) identifying a

(please tum over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED SAME AS RPTDTIC USERS .

23. ABSTRACT SECURITY CLASSIFICATION
Unclassified, Unlimited Distribution

22s. NAME OF RESPONSIBLE INDIVIDUAL
John S. Herman, Capt, USAF

DD FORM 1473, 83 APR

22. TELEPHONE NUMBER (Include Area Code)
(412) 268-7631

22¢. OFFICE SYMBOL
ESD/AVS (SEl)

EDITION of 1 JAN 73 IS OBSOLETE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

[ABSTRACT —continued fram page one, block 19

solution structure for the problem following the reuse plan, 3) reconfiguring the solution structure to improve

reuse at the next phase, 4) acquiring, instantiating, and/or modifying existing reusable components, 5) inte-

grating the reused and any newly developed components into the products for the phase, and 6) evaluating

}Re _froduc}s. These activities are used as the base model for defining the specific activities at each phase of
e life cycle.

this methodology focuses more on identification and application of reusable resources than on construction of
reusable resources, and some enhancements in the construction aspect might be necessary to make it more
complete.

This methodology has never been applied; it will be used in an application redevelopment experiment and then
will be improved based on our experience.

